Focus on Safety

By Ken Reinert

F/O, DCA

Assistant Editor, The Wiss-key

ARW Communications Committee Chairman

Greetings, readers, and welcome to our “Focus on Safety” issue of the Wiss-key. You may notice as you read this issue that we have moved away from our usual format, but fear not—that will return with the next issue. So, anyone who has a yen to write something for us, please do so. See your name in print . . . be famous! Well, OK, maybe not that famous, but still . . . you get my drift.

If we took a quick poll on what each of us thinks about when we consider safety in our realm, I would guess that there would be as many different responses as there are responders. The incredible thing, though, is that all of those responses would be correct. Safety encompasses so much of what we do, and as I like to tell people outside the industry, my job as an airline pilot is to complete the flight safely—that is, as long as conditions allow us to commence said flight safely. Arriving on time is secondary. Arriving at the intended destination is secondary (although it has a much greater chance of happening than being on time, statistically). Getting to the planned destination on time, but not safely, however, undoes all the attaboys we strive to collect.

continued on page 5
A Message from Your MEC Chairman

By Joe Ellis
CA, ORF
ARW MEC Chairman

Welcome to the Wiss-key’s first safety issue. We have a lot of good information in this issue, ranging from technical pieces about radiation exposure to the history of ASAP. Most of all, this issue demonstrates the high priority we continue to place on maintaining safe operations.

If you look at our safety performance record over recent years, it is evident that we have not only operated at a high level of safety, but we have also been able to demonstrate year-on-year improvement. Nonetheless, we cannot afford to be complacent, as zero major accidents does not imply that all of the underlying safety deficiencies have been resolved.

The issue of safety demands constant vigilance, and the union is determined to ensure that the improvements achieved are maintained in the future. We are committed to reestablishing critical safety programs like ASAP back at Air Wisconsin. Programs like ASAP and FOQA have a solid track record for working at many airlines in the United States, and we are committed to making them work at Air Wisconsin.

We will continue to offer our expertise to the Company in order to develop ongoing improvements to further enhance our airline’s good safety record. Safety remains our number one priority, giving the passengers who travel using our airline the confidence that their journey will be safe, secure, and convenient.

More work is required. Stay tuned.

ALPA Emergency Relief Fund
Pilots Helping Pilots

If you are an ALPA member affected by a widespread disaster and need help, be sure you reach out to the ALPA Emergency Relief Fund (AERF) for assistance. Log on to www.alpa.org/relief, and click on the “Help” button. Review the eligibility requirements and submit an application, following the instructions provided.

You can also contact AERF by sending an e-mail message to relief@alpa.org or by calling 1-888-FLY-ALPA (select 3 for Membership Services). You’ll need to provide your name, airline, membership number, and contact information.

To make a U.S. tax-deductible donation, please log on to the ALPA Emergency Relief Fund webpage or send a check to ALPA Emergency Relief Fund/535 Herndon Parkway/P.O. Box 1169/Herndon, VA 20172-1169.

Remember that AERF is only as valuable as we make it, so please donate generously today.
A Message from
Captain Lee Moak

Since 1931 when our union was established, ALPA has been the leading pilot advocate for aviation safety. Over the past 80 years, our collective efforts have helped make commercial aviation the safest form of transportation in North America today. They include:

- Championing a pilot-incident reporting system with immunity protections, which ultimately led to the establishment of ASAP in 2000. Today, 25 of the 84 pilot groups with ASAP are represented by ALPA;
- Launching a campaign to urge the U.S. government to improve regulations covering the air transport of hazardous materials (1973);
- Pressing for domestic flight time/duty time limitations that resulted in the first successful rulemaking on this issue in 1985;

Decades later, these issues—strengthening protections for safety reporting programs, air transport of hazardous materials, flight time/duty time regulations and minimum rest requirements for all airline pilots, regardless of the type of flying, and maintaining one level of safety—continue to be top priorities for our union.

We remain passionate advocates for one level of safety because it leads to improved working environments and operations overall. ALPA’s position, backed by solid research, is that there is no difference between passenger and cargo, regional and international, scheduled and unscheduled operations, where aviation safety matters are concerned.

We also continue to press for stronger protections for ASAP and FOQA programs. In my February 2011 statement on the FAA Reauthorization Act of 2011 to the U.S. House of Representatives’ Committee on Transportation and Infrastructure, Subcommittee on Aviation, I explained how the information and insights provided by these programs can improve safety by significantly enhancing training effectiveness, operational procedures, maintenance and engineering procedures, and air traffic control procedures.

I stressed that these programs, especially ASAP, rely on a sound foundation of trust among all three parties—the airline, the regulator, and the employee group concerned. Pilots have a professional interest in identifying and correcting safety deficiencies, and they must not be hindered from doing so.

That commitment to the underlying principles of ASAP and FOQA programs led to your union leadership recently making the hard decision to suspend the pilot ASAP at Air Wisconsin. In mid-May, I invited Air Wisconsin pilot group leaders to ALPA’s D.C. office to discuss concerns related to ASAP and FOQA on your property as well as future issues facing Air Wisconsin pilots. I assured them that you have ALPA’s full support and resources as you work to reinstate a stronger ASAP and establish a FOQA program on your property. ALPA is committed to helping Air Wisconsin pilots and your airline to realize the proven benefits of these valuable programs.

Our success over the years is due in large part to our collective strength and multifaceted aviation safety structure. It’s a powerful combination of pilot leaders and staff professionals who bring their depth of knowledge, expertise in virtually every area of aviation, and vast experience to these initiatives.

Our success is also due to our constructive engagement with the many stakeholders—from legislators and regulators to manufacturers and managements, other employee groups, unions, and ALPA pilot groups—who share our goal of advancing the highest standards of air safety. I believe that this type of collaboration is paramount to this mission.

The formation of the US Airways Express Pilots Alliance (USEPA), in which the Air Wisconsin pilots are actively involved, is a strong example. ALPA pilot representatives from seven carriers flying in the US Airways Express system have come together to harmonize their safety programs with the full support of ALPA and backed by the union’s resources. I am confident that all the pilot groups involved will benefit from this collaboration, as will your airlines and your mainline partner, US Airways.

ALPA’s approach to aviation safety centers on the tenet that a well-trained, well-qualified, and well-rested pilot is the most important safety component of the commercial aviation system. The level of safety we have helped to achieve in our industry over the past 80 years is a testament to the legacy of professionalism and dedicated efforts of the ALPA pilots and staff on the front lines. ALPA has a proud history, and pilots like you will carry that legacy into the future.
From the Editor
continued from page 2

Some of the things we consider when we talk about safety in the aviation community are obvious. We don’t like hitting things with our airplanes (nor do we like things hitting our ride, be it airborne or on the ground). We prefer to avoid hazardous weather. We like to have schedules that allow us enough rest to continue to use our superior judgment so we don’t need to call on our superior airmanship skills to get out of a pickle. In addition to rest, we need to consider our other needs—food and water. Just as the airplane needs sufficient fuel to get from point A to point B, we also need to be sufficiently nourished. Given the environment we work in—a pressurized cabin with a very low humidity level—we also need to keep properly hydrated, even more so in the summer months. And, let’s not forget about our flight attendants—last time I checked, they were part of the required crew, and a poorly functioning FA does us no good. (Personally, I don’t think a diet of power bars and caffeinated beverages makes the cut, certainly not when pushing a 14-plus-hour duty day!)

Enough said. Fly safe, fly the contract, and we’ll see you in the next issue!

About the cover . . .

The lightning strike (upper right) occurred en route from AVL to CLT on October 12, 2010. We were in IMC and light precipitation, but the radar was not painting anything significant. Once we got into the charged cloud, though, it didn’t take very long from the time the Saint Elmo’s fire began until we took the strike. (I never saw Saint Elmo’s fire climb up from the radome like I did that night.) We continued uneventfully into CLT; a postflight inspection confirmed that we did get struck with the visible damage on the left wingtip as shown. Obviously, this aircraft (408) was rendered out of service for a ferry flight and mandatory lightning strike inspection.

The goose encounter (lower right) took place near PHL on January 2, 2007. We were at 3,000 feet being vectored for a visual approach to RW 35 when we saw a formation of about a dozen geese right in front of us. Fortunately, we only took one out, but this poor guy got firmly wedged up against the front bulkhead by the TRUs. Usually by the time you see birds, it is too late to maneuver to avoid them. Yes, that is blood and goose remains seeping from the base of the radome, and the radar antenna is hanging out of the hole—the impact was hard enough to break the dish from its mount and it is hanging by its cable. (This, by the way, is aircraft 449’s third appearance on a Wiss-key cover.)

Beneath goose encounter is Washington, D.C., with the outline of P-56 shown. Not too much to say here that we don’t already know. What is interesting is that what is now P-56 was established as far back as the 1930s by presidential executive order, and codified into 14 CFR §73.87 in October 1966. The recent amendment to the boundary of P-56A takes into account that one of the descriptive points (the intersection of New Hampshire Avenue and the Rock Creek and Potomac Parkway NW) no longer exists, and hasn’t since the Kennedy Center was built in 1967. The lat/long coordinates remain the same, though, so there is no physical change to the shape of the airspace.

Legislation regarding the tax liabilities and options of our bankruptcy note and claim money is pending in Washington, D.C. This legislation would not have happened without ALPA-PAC. The final hurdle of getting it passed into law remains. If it is passed, the dollar value of the tax benefits to Delta pilots could exceed several years’ worth of dues payments.

Remember, the ALPA Political Action Committee (PAC) is your seat at the political table in Washington, D.C. Dues money is not used for PAC activities, nor is dues money commingled with ALPA-PAC contributions. Your contributions are separate and allow ALPA to present your issues in Washington, D.C. Without contributions, you have no voice, and with no voice your issues are not heard. Please consider signing up for a monthly contribution. You can do this easily by printing and sending in the ALPA-PAC check-off authorization card found on the DALPA website. Under the “Committees” tab, select “Government Affairs” and then click on the “ALPA-PAC” link under “Document Categories” on the left and find the “ALPA-PAC sign-up” link at the bottom of the page. A small amount from each pilot can make a big difference for every pilot.
ASAP is a great tool for an airline to use to reveal safety problems in its operation. The ability to get safety-related reports and observations directly from the people who work on the front lines is invaluable. A lot of people view ASAP as a pilot certificate protection program, but that opinion is rather narrow-minded and really sells the program short. A healthy ASAP can identify safety concerns and trends not only within the airline but also within the system in which that airline operates. In exchange for submitting a safety-related report, the FAA is willing to offer enforcement incentives to the airline employee participating in ASAP. The benefit to the FAA is the ability to learn from an event that it might not have discovered by relying solely on its internal reporting system.

ASAP has become an important program for our industry and improves safety for all who use the airspace system.

The FAA designed ASAP to be a joint partnership between the FAA, the Company, and the associated labor group. Because ASAP is a partnership, each program is somewhat unique and takes on a personality of its own. Maintaining harmony and balance in ASAP can be challenging. Differing opinions or perspectives on a policy or an event can put tremendous pressure on ASAP. If you look around the industry, most airlines that have ASAP have had some kind of strife or tension within their program. In fact, about half of the ASAPs around have been suspended for various reasons. The good news is that the differences are usually resolved and the program comes back with better language in the supporting documents and a renewed interest for cooperation within the program.

In October of 2008, Comair lost its ASAP when ALPA voluntarily withdrew participation. ALPA withdrew from the program because we felt that the Company was doing harm by eroding pilot trust in the ASAP process. ASAP relies on trust. If you lose the trust of the reporting employees, you lose your reports and the program will fail. Our management was conducting parallel investigations of events in ASAP and would threaten to discipline pilots who participated in the program. We had a fairly high-profile event occur—one pilot was accepted into our ASAP and one was excluded. The Company made it clear that it was going to discipline the pilot who had been accepted into the program after that pilot had successfully completed their ASAP duties. Unfortunately, this brought our program to an end.

Comair’s ASAP was down for about six months. During the six-month break we were able to negotiate a two-party letter of agreement (TPLA) that better defined the protections pilots are afforded in the program. The TPLA clearly defines when the Company can conduct investigations of events that are accepted into ASAP. The TPLA prohibits the Chief Pilot’s Office from conducting parallel investigations of any event where the pilots involved had reports accepted into ASAP. The ASAP Event Review Committee (ERC) now investigates events with the assistance of Comair’s corporate Flight Safety Department in a confidential process. The pilots are sometimes brought in to a crew resource management debrief to evaluate their mistakes without the threat of discipline. Retraining is done as needed at the discretion of the ASAP ERC. If a pilot’s report is excluded from ASAP, the information that is permitted to be released to the Company is clearly defined. Along with the clarifications the TPLA provided, we feel that there is a better respect in place for the ASAP process by all parties involved.

This process recognizes that safety is the priority and training achieves this goal far better than pilot punishment.

Reprinted with permission from the Comair MEC.
What ASAP Means to Me

By Stephan Wessel
CA, DCA
Communications Committee Chairman

Like most of our pilots, I was saddened by the loss of AWAC’s Aviation Safety Action Program (ASAP). As with most things in life, I didn’t realize its true importance until it was gone.

I started my aviation career in the German Navy, flying mostly VFR over international waters. There was very little pilot monitoring. Outside of the “black box” on the aircraft, only the crew knew what happened during flights, and nobody was in any position to witness and report crew mistakes or violations. We didn’t have an ASAP or equivalent program. We had the squadron bar. In that informal setting among comrades, when rank no longer mattered, crewmembers often confessed to mistakes they had made or dangerous experiences they had encountered. It was a great learning opportunity and a chance to hear from wiser, more experienced pilots about their mistakes, and ways they could have been avoided. I listened and learned because I know that in aviation there are “those who have, and those who will.” As the years went by, I had many opportunities to make my own mistakes and use the unofficial immunity of the squadron bar to share them. Hopefully, my comrades learned something from my stories, much like I had learned from so many who came before me.

We obviously don’t have an Air Wisconsin squadron bar, and we rarely meet other crews on trips. Our pilots live all over the country, and thus do not hang out together much on our days off. The reality of airline life severely limits our ability to informally share our experiences with our fellow pilots. As a result, our pilots could make the same mistakes that other crews have, but they hadn’t had the opportunity to share with their fellow aviators.

On December 1, 1974, TWA 514 misinterpreted an approach clearance into IAD, started a premature descent, and crashed into high terrain. The investigation revealed that six weeks prior, a United Airlines flight had made the same mistake. Fortunately, that crew realized their mistake and recovered safely. United had an internal safety reporting program at the time, and when the crew reported their experience, it was shared with the other United pilots. Had that warning been made available to pilots at other airlines, too, the TWA 514 accident might have been averted.

One result of this catastrophe was the creation of NASA’s Aviation Safety Reporting System (ASRS). Although ASRS is slightly different than ASAP, the main idea behind both programs is the same—let frontline employees who are in the best position to witness dangers warn others so mistakes aren’t repeated.

Improving safety is the most important part of our job. I would love to avoid the mistakes others have made before me. I often use breaks in my schedule to browse through ASAP reports, and many times I think: “Wow, I would have made the same mistake under the same circumstances.” By reviewing the ASAP database, I hope to avoid some of other pilots’ mistakes.

I sincerely hope we can restart ASAP soon. In the meantime, I hope you find some benefit from this safety-focused issue of the Wiss-key.

Fly safely!
Common Questions

As a reserve captain, I spend a disproportionate amount of time in our crew rooms, deadheading on Air Wisconsin airplanes, or flying with many different first officers and flight attendants. As I’m sure is the case with most of us, I like the people I work with and enjoy meeting crewmembers I’ve not worked with before. I have found that a few questions are commonly asked of me. In this column, I will attempt to answer some of these common questions.

By Captain Mark Lockwood
ARW Negotiating Committee Chairman

I’ve heard that the Company will drag negotiations out until 2015 and then just shut us down. What do you think of that?
I suppose the Company could drag negotiations out as long as it wants, but our contract does not need to be open in order for them to shut us down. They could shut down whenever they like, regardless of the pilot contract status.

As long as we are talking about 2015, though, if the Company chooses to continue the business past August 2015, an open pilot contract would be a detriment. Companies tend to prefer closed contracts for a number of reasons, among them predictable labor costs and no threat of lawful self-help. If AWAC wants to acquire new airplanes or even continue the business, then it needs a closed pilot contract in advance of 2015, not an open one.

Attrition is certain to pick up. What happens if you, Bill Patterson, or Bob Burgess leaves Air Wisconsin before negotiations are finished?
I think you are correct in saying attrition is certain to increase. We are already seeing this occur. There is a possibility that one or more Negotiating Committee members will leave Air Wisconsin in the next couple of years.

I can say that I am not concerned that the direction of the committee will change, regardless of its composition. As we have seen from the surveys, the majority of pilots at Air Wisconsin have the same goals and expectations for the next contract. The Negotiating Committee and your elected representatives on the MEC are committed to representing the goals of the pilots, so unless the direction from the pilot group changes, our direction will not.

How much of a raise are you planning on bargaining for us? Are we looking for 2001 rates?
We have not started specifically looking at new pay rates. At the present rate of progress in negotiations, we are probably at least a year and a half away from bargaining pay scales. We have already seen pay increases at SkyWest and the new Pinnacle (consisting of the pilots from Pinnacle, Mesaba, and Colgan). We expect that trend to continue as all pilot groups that are not presently bargaining will be in the near future.

Generally speaking, we are not bargaining for the 2001 contract, we are bargaining for the 2011 (or more likely 2012) contract. The new contract needs to reflect all the myriad of changes, including pay, work rules, retirement, insurance, and scope, since the 2001 contract was bargained.

I got some copies of the Negotiating Committee newsletter—THE X-RAY—in the mail with my MORE sticker, but I haven’t gotten any since. Are you still publishing THE X-RAY?
Yes, we are still publishing THE X-RAY. In order to keep costs down, we are publishing it electronically. If you have your e-mail address on file with ALPA, you should be receiving it bimonthly toward the end of each odd-numbered month. Additionally, you can find it on our website at www.arwnegotiations.com.

When is self-help illegal?
Work stoppages or other forms of operational economic pressure by employees at air carriers (otherwise known as “self-help”) are illegal at any point prior to the exhaustion of all the bargaining and mediation procedures of the Railway Labor Act (RLA). While job actions have always been illegal, the underlying law, the RLA, has matured over time, and the scrutiny and consequences of job actions have matured as well. The consequence of any job action is economic harm to the company. Intentional economic harm to your company is illegal under the RLA, except in specific circumstances.

In order to further understand the legalities of work stoppages or other economic operational self-help tactics, Bill Patterson will expand on the potential penalties for and consequences of premature and illegal job action self-help in his piece below. Then, Bob Burgess will discuss the importance of following the RLA process to its conclusion.
By Captain Bill Patterson
ARW Negotiating Committee Member

Why can't we just conduct a work stoppage?
Here is a common question that the Negotiating Committee handles on a regular basis: Why can't we just have a work stoppage or other form of pressure tactic and try to force change?

As frustrating as cost-cutting, outsourcing, and noncommutable schedules can be, simply put, we cannot participate in any form of economic self-help or work stoppage until all of the bargaining and mediation procedures are exhausted under the RLA. As Captain Burgess discusses in his Wiss-key article, there is a clear path that is permitted when given approval by the federal government through lawful “self-help”—at the end of the RLA bargaining process.

One clear example of how a pilot group can fall into trouble for perceived job actions is the court ruling the United pilot group received in the fall of 2008. The basis of the injunction came from United management believing and citing that the pilots were participating in an illegal sick-out. United took the UAL pilots to federal court and were successful in convincing a judge that the UAL pilots were responsible for alleged illegal actions.

The injunction found that “from calling, permitting, instigating, authorizing, encouraging, participating in, approving, or continuing any interference with United’s airline operations, including but not limited to any strike, work stoppage, sick-out, slowdown, work-to-rule campaign, concerted refusal to accept voluntary or overtime flying, or other concerted refusal to perform normal pilot operations in violation of the Railway Labor Act.”

One of the largest problems with premature, illegal self-help actions is that it leads to the danger of a court’s handing down potentially debilitating fines (as happened to the Allied Pilots Association because of a 1999 sick-out at American Airlines) and discipline that could affect each pilot on our property. Additionally, if a court finds that the pilots have “unclean hands” by engaging in an illegal job action, the pilots may be blocked from engaging in self-help when the time comes, or from seeking any assistance from the court at a later time if management acts improperly under the law.

It is important to remember that we are all professionals, and although we may want to get back at the Company for mismanagement, there are legal ways to accomplish our bargaining goals by following the RLA process. Premature self-help has never succeeded in gaining what pilots want at the bargaining table. It also comes down to maintaining professionalism and remembering that the passengers seated in the back of the airplane are not interested in the airline industry or the struggles between labor and management. They are looking for a safe ride from point A to point B with their pilots focused on the task at hand.

As we continue down the road of negotiating our next contract, please know that your ALPA leadership will keep you informed of our progress. We intend to utilize all legal tools to gain contractual improvements for all of us. We are hopeful that Air Wisconsin management will recognize that we are assets to the future of this company. It is time for you to put that energy to good use and unify with your fellow pilots here at Air Wisconsin.

By Captain Bob Burgess
ARW Negotiating Committee Member

When is self-help legal?
I think most of us understand that our labor rules fall under the RLA. Enacted in 1926, the RLA was the product of negotiations between major railroad companies and the unions that represented their employees. In 1936, the RLA was amended to include the airline industry in its jurisdiction. The purpose of the RLA is to avoid interruption of interstate commerce by providing prompt resolution of disputes between carriers and employees, and to protect the right of employees to organize and bargain collectively. Prior to the RLA, labor strikes were met with the replacement of workers, or the threat of force from companies and government troops to force resumption of services, without certain dispute resolution.

The RLA allows employees and the Company the right to self-help only after the parties have exhausted all of the RLA’s negotiation and mediation procedures, including the final 30-day cooling-off period set by the National Mediation Board. At that time, the employees’ self-help may take many forms, including job actions, rolling strikes, or a total strike. The Company may also engage in self-help at that time, which might include “last offer” implementation, lockout, and worker replacement.

Since the organizing of labor groups, self-help (or the threat of self-help) has been a major weapon in the arsenal available to labor groups. Management views
continued on page 11
I majored in aeronautical science at Embry-Riddle University, essentially the “I want to be a professional pilot” major. On its own, this degree didn’t give me a whole lot to fall back on, but being an airline pilot was always my dream, so I didn’t really care. Just in case, though, I was advised to also select a minor to provide a backup plan to my flying career as well as to simplify my elective course selection. Many of my peers chose to minor in air traffic management or aviation business, but since I wasn’t interested in becoming a controller or having a career in the business side of aviation (this was reinforced during a two-year stint in aircraft management prior to flying for Air Willy), I chose to minor in aviation safety. I thought that being educated on “what not to do in aviation” might be the perfect complement to a long and healthy flying career. It did that and much more.

On the first day of Introduction to Aerospace Safety, our professor told us the two important realities of aviation safety. First, all safety regulations are written in blood. Second, aviation safety is directly related to money. The first reality has been proven over and over again. In 1935, a TWA DC-2 crash killed a senator and brought about the Civil Aeronautics Act of 1938; in 1956, a TWA Super Constellation/UAL DC-7 midair collision over the Grand Canyon led to the Federal Aviation Act of 1958; and in 1960, a TWA Super Constellation/UAL DC-8 midair known as the Brooklyn–Staten Island crash led to sweeping reforms in air traffic control procedures. (All of these accidents are highlighted in *Flying the Line* by George E. Hopkins.) While I did learn “what not to do” from examples such as these, this commonly held concept of learning from the fatal misfortunes of others left me seeking a better way to improve aviation safety.

I found the second reality, that safety is directly related to money, somewhat disappointing. Until I took a course entitled Safety Program Management, I assumed that if an airline were aware of a way to improve safety, it would pursue it regardless the cost. However, in that course my professor explained that a safety program manager has to be a good salesman, since safety and money are related. If the safety program manager cannot sell his program to the Finance Department, he will not have the funding needed for his program. I was shocked at this news. Shouldn’t the airline executives all want successful and working safety programs? Shouldn’t safety be the primary focus when running an airline? I found myself frustrated by the realities of the business side of aviation and wanting a better solution.

Thankfully, I found a renewed sense of hope when my safety training highlighted the existence of programs like FOQA and ASAP. While nothing can take away from the importance of proper accident investigation, proactive programs such as FOQA and ASAP have been paramount in changing the mindset of aviation safety from “what have we learned from this accident” to “we have prevented an accident from happening.” I saw a great example of this mindset while interning at Continental Airlines. I was also able to experience firsthand how an airline’s management and its pilots can work together toward the common goal of safety while also saving the company money. Continental’s FOQA program was able to do more than just provide for a safer airline; it made Continental a measurably more efficient airline by identifying potential fuel savings, providing better mechanical failure prevention, and improving inefficiencies in flight paths. Continental’s program only got to be as successful as it was because the Finance Department recognized the potential for safety improvements and financial savings and thereby empowered the safety program manager to do his job.

When I started my involvement with ARW ALPA’s Central Air Safety Committee (CASC), I could see we were back to the lessons learned in those safety classes, the challenge being to figure out how to get from where we were to a fully functioning Safety Department such as the one at Continental Airlines. In March 2010, I spoke with a Colgan Airlines CASC representative at an industry conference who told me that his airline was “throwing money at our safety programs right now.” Unfortunately, 50 people had to die before that happened. I don’t want Air Wisconsin’s safety programs to be paid for in blood.

While Air Wisconsin’s Safety Department has been moving in a positive direction in the last few years, we still have a long way to go. We need a “just culture” of safety that is fostered from the top down and based on a trusting relationship between the Safety Department and the CASC in order to become a “we prevented this accident from happening” kind of airline. As much as the Finance Department doesn’t want to hear it, we need safety programs that are properly funded and given the attention they deserve. While my professor was right that aviation safety has a lot to do with money, I know there are ways to mitigate the financial costs of the programs à la Continental Airlines. You can’t buy a safety program, but when you buy into properly functioning safety programs, you potentially can get much more in return than your initial investment.
Testing and Training

By Erik Johnson
CA, ORF
Chairman, Testing and Training Committee

Hello again!

As most of you have probably noticed, this issue’s theme is “safety.”

As professional pilots, we are responsible for the safe, efficient transportation of our passengers and cargo. While we all have different ways of accomplishing this task, safety should always be at the front of our minds.

While one level of safety is our goal, many of us are guilty of a degree of complacency on a briefing every now and then. An airman might miss briefing the touchdown zone elevation on a visual approach (yes, you’re supposed to cover that) because either it was forgotten or it just wasn’t considered pertinent or important. Our procedures are in place for many reasons, from “something bad happened” in the past to lessons learned from other operators. If safety isn’t reason enough to brief that touchdown zone on a visual approach, I will also court you from the CYA (cover your . . . you know . . . A) angle. If something were to happen on that approach or landing where you didn’t brief the touchdown zone, you might have to answer for why you omitted that in an NTSB hearing or a Section 19 investigation. Now, I’m not trying to make everyone paranoid; I simply want to point out the importance of briefings and following the profiles. We go back in the simulator to “square up” our rounded-off corners, and we are line-checked for the same reason. Please look at these events as opportunities to be safer and to improve yourself and your skill set.

The quarterly IBT is also an excellent opportunity to learn new things and expand your knowledge. Each quarter, the IBT contains multiple sections on aircraft systems, hot topics, and seasonal information. Many airmen are procrastinators. They regularly wait until the last possible second to complete the IBT in a marathon computer session fueled by Cheetos and Jolt Cola. I would urge everyone not to follow that example, because you can just about hear those procrastinators saying, “Boy, I would have liked to have known that the other day when that happened to me,” or, “I could have used a refresher on the deice tables two months ago” (when the IBT came out). Point being, the information is seasonally relevant and could potentially save you some headaches and paperwork.

The Company doesn’t give us all this training because it has to or wants to torture us. ALPA is involved in the development of most of these programs and wants to make all the training you receive relevant and useful. We do our best to provide this pilot group with the highest-quality training possible. Everyone involved has a vested interest in your safety.

So, the next time you head down to Charlotte for a night of fine dining at Miguel’s, yet again watching Airplane alone in your hotel room, studying at the last minute or however you prepare for your PC, do your best to take the most away from your training experience. Fly safe, fly the contract, and be good.

By Erik Johnson
Testing and Training Committee chair, accepting the ARW ALPA Volunteer of the Quarter on behalf Matt Hintze and the Testing and Training Committee.

Erik Johnson, Testing and Training Committee.

Common Questions
continued from page 9

11

Testing and Training

this threat very seriously, as self-help is a form of economic warfare. The consequence of most forms of self-help is economic harm to your company.

Again, self-help is illegal under the RLA, except after the parties have exhausted all of the RLA’s negotiation and mediation procedures. This elaborate and lengthy process is as follows:

• The union and management meet to exchange bargaining proposals in an attempt to reach a voluntary agreement (current Section 6 bargaining). We are here right now.
• Either party may invoke mediation assistance from the National Mediation Board.
• At some point, the NMB will offer the parties the opportunity to arbitrate the unresolved issues.
• If either party refuses, a 30-day cooling-off period commences, as set by the NMB.
• At the end of that cooling-off period, both parties are generally free to exercise self-help options.

In conclusion, we all have an obligation under the law not to engage in any self-help until permitted after the 30-day cooling-off period expires. As difficult as this can be at times, we must remain patient, allow the process time to work, and not engage in premature self-help actions that can only harm us. We have very significant leverage to employ at the conclusion of the RLA process, and we want to avoid any premature actions that will lessen our ability to apply this maximum lawful leverage at the end of the bargaining process.
This issue of the Wiss-key is centered on the topic of safety. More specifically, I was asked to put an emphasis on how my experience with the Critical Incident Response Program (CIRP) has affected or changed my personal experience on the line. I attended the annual CIRP chairman’s meeting this spring in Denver, and one of the most important concepts I came to understand is what I like to call “the silent threat.” One of the sessions during this meeting was devoted to CIRP chairs at other airlines, who shared their experiences on the cases they’d handled. Since all cases are confidential, the information was general in nature and meant as a learning experience for all attendees. Experiences from major accidents as well as minor incidents were shared. I became cognizant that the failure to address stress from a minor incident can be just as harmful as a failure to treat symptoms from a major accident.

It is normal for individuals to be unable to recognize their own stress reactions; therefore I have become more aware of the people I am working with and more alert for any potential situations that may evoke stress reactions out on the line. If a situation arises and I notice that I or another crewmember is “shaken up” or exhibiting normal stress reactions to an event, I learned that sometimes the safest course of action is to call Scheduling and tell them the crew needs to go to the hotel rather than continuing the day. Remember, you are the last line of defense flying the line, and if you feel you or a member of your crew is not safe to continue—it is ultimately your decision.

The term “critical incident” probably brings to mind images of people evacuating a burning airplane, but today I want to talk about the minor incidents that we see or hear about much more often. Specifically, I am talking about incidents that create stress reactions by those directly or even indirectly involved who may have heard about an incident from someone else. These stress reactions are often untreated because of the trivial nature of the event. Some of these less obvious events common to pilots include a wind shear event, a near-miss, an unruly passenger, moderate to severe turbulence, proficiency check failure, a crewmember injured on the van ride to the hotel, or a crewmember injured on the van ride to the hotel.

<table>
<thead>
<tr>
<th>PHYSICAL</th>
<th>THINKING/COGNITIVE</th>
<th>EMOTIONAL</th>
<th>BEHAVIORAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest tightness</td>
<td>Blaming</td>
<td>Abandoned</td>
<td>Alcohol consumption</td>
</tr>
<tr>
<td>Chills</td>
<td>Confusion</td>
<td>Agitation</td>
<td>Antisocial actions</td>
</tr>
<tr>
<td>Cold</td>
<td>Difficulty calculating</td>
<td>Anxiety</td>
<td>Changes in activity</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>Difficulty concentrating</td>
<td>Apprehension</td>
<td>Changes in sex life</td>
</tr>
<tr>
<td>Dizziness</td>
<td>Difficulty in problem solving</td>
<td>Denial</td>
<td>Emotional outbursts</td>
</tr>
<tr>
<td>Fast breathing</td>
<td>Difficulty making decisions</td>
<td>Depression</td>
<td>Erratic movements</td>
</tr>
<tr>
<td>Fatigue</td>
<td>Difficulty naming common objects</td>
<td>Fear</td>
<td>Harsh with family</td>
</tr>
<tr>
<td>Grinding teeth</td>
<td>Difficulty reading</td>
<td>Feeling isolated</td>
<td>Hyperalert to environment</td>
</tr>
<tr>
<td>Headaches</td>
<td>Disorientation (place/time)</td>
<td>Feeling lost</td>
<td>Inability to rest/relax</td>
</tr>
<tr>
<td>Hormone changes</td>
<td>Distressing dreams</td>
<td>Feeling numb</td>
<td>Increase/Loss of appetite</td>
</tr>
<tr>
<td>Nausea</td>
<td>Hypervigilance</td>
<td>Grief</td>
<td>Job changes</td>
</tr>
<tr>
<td>Profuse sweats</td>
<td>Increased/decreased alertness</td>
<td>Guilt</td>
<td>Nonspecific body pains</td>
</tr>
<tr>
<td>Rapid heartbeat</td>
<td>Intrusive memories</td>
<td>Intense anger</td>
<td>Pacing</td>
</tr>
<tr>
<td>Sleep problems</td>
<td>Memory problems (short or long)</td>
<td>Irritability</td>
<td>Paranoia</td>
</tr>
<tr>
<td>Thirst</td>
<td>Offensive/Defensive self reviews</td>
<td>Limited contact</td>
<td>Relationship problems</td>
</tr>
<tr>
<td>Tremors (hands)</td>
<td>Overwhelmed by normal routines</td>
<td>Sadness</td>
<td>Speech pattern changes</td>
</tr>
<tr>
<td>Twitching</td>
<td>Poor attention span (decreased)</td>
<td>Uncertainty</td>
<td>Startle reflex intensified</td>
</tr>
<tr>
<td>Upset stomach</td>
<td>Seeing event over and over again</td>
<td>Wanting to hide</td>
<td>Suspiciousness</td>
</tr>
<tr>
<td>Visual difficulty</td>
<td>Slower thought process</td>
<td>Worry</td>
<td>Withdrawal into oneself</td>
</tr>
</tbody>
</table>

Figure 1: Typical reactions to critical incident stress
By Captain Gary C. Butler (Canadian), PhD, Director, ALPA Aeromedical In-Flight Occupational Exposure Research

Scientists have known since 1907 that radiation originating outside the earth’s atmosphere causes increasing effects as altitude above the ground increases. Modern scientists generally believe that stellar flares, stellar coronal mass ejections, supernova explosions, pulsar acceleration, and galactic nuclei explosions produce and accelerate this radiation, called cosmic radiation.

Flight crews, while flying, are exposed to amounts of cosmic radiation that are greater than persons on the ground receive from both cosmic and terrestrial radiation.

Galactic radiation

At airliner flight altitudes, high-energy subatomic particles mostly from outside the solar system are colliding with and disrupting atoms of nitrogen, oxygen, and other atmospheric gases. These collisions produce photons and additional subatomic particles, which are referred to as galactic cosmic radiation. The number of galactic radiation particles entering the atmosphere and, as a consequence, the amount of radiation at airliner flight altitudes varies inversely with an approximate 11-year cycle of rise and fall of solar activity. Magnetic fields associated with low-energy subatomic particles (solar wind) that the sun continuously emits deflect lower-energy galactic particles that would otherwise enter the atmosphere; this causes the variation in the amount of galactic radiation. The solar wind particles are in themselves too low in energy to affect the amount of radiation at flight altitudes.

Variation with latitude and altitude

At any given cruise altitude, the galactic radiation dose rate increases with distance north or south of the equator until it plateaus at high latitudes. The lower the altitude, the thicker the atmospheric layer and, therefore, the greater the protection.

Solar flares

A solar flare is an intense magnetic disturbance on the sun, resulting in an explosive emission of various kinds of radiation. During some solar flares, the number and energies of particles emitted from the sun may temporarily become high enough to significantly increase the amount of ionizing radiation at flight altitudes.

At altitude, the radiation resulting from solar flares is produced in the same way galactic cosmic radiation is produced. The particles from the sun, as well as the photons and particles they produce in the atmosphere, are referred to collectively as solar cosmic radiation. Between 1956 and 1991, inclusive, approximately six solar-particle events occurred, during which the radiation at 41,000 feet above the polar regions probably rose to more than 100 microsieverts per hour. The normal radiation level at these locations is approximately 12 microsieverts per hour.

Radiation exposure and recommended limits

The FAA (Dr. Wallace Friedberg, Civil Aeromedical Institute) has estimated the amount of galactic radiation that flightcrew members receive on a wide variety of routes to, from, and within the contiguous United States. Cumulative dosage, of course, will vary depending on altitude, latitude, and duration of flight on the route flown.

At the present stage of the solar cycle, the galactic dose ranges from 0.023 to 0.80 millisievert per 100 block hours. Typically, cosmic radiation exposure for airline pilots in North America ranges from 3 to 5 millisievers annually. These values are considerably lower than the occupational limit of 20 millisieverts per year (five-year average) that the International Commission on Radiological Protection (ICRP) recommends for a nonpregnant adult.

Considerations during pregnancy

Some recommendations concerning exposure apply only to pregnant women. The ICRP recommends that once a woman learns she is pregnant, her occupational exposure to ionizing radiation should not exceed 1 millisievert for the remainder of the pregnancy. Further, the exposure of the unborn child should not exceed 0.5 millisievert in any month (excluding medical exposures), once a pregnancy becomes known.

All flightcrew members can calculate their cosmic radiation dose using the FAA computer program CARI-6M. A free download is available online at www.faa.gov/data_research/research/med_humanfacs/aeromedical/radiobiology/cari6m/download/.

Health concerns

The health concerns about aircrew members’ exposure to cosmic radiation are increased risk of cancer, genetic defects that can be passed on to future generations, and harm to an unborn child. Death

continued on page 14
from cancer is the primary health risk associated with occupational exposure to ionizing radiation; that is, damage to genetic material (DNA) in the cell is thought to be the mechanism that underlies the potential risk of increased cancer.

The risk to aircrew members of eventually dying of cancer as a result of exposure to galactic radiation during a career of flying, compared to the risk to the general population, is slightly higher, as are the risks of causing genetic defects and of harming an unborn child.

Research projects investigating health effects in flight crews caused by cosmic radiation exposure are relatively few. Generally, while these studies have reported some additional cancers, their results are far from definitive.

Magnetic fields

Magnetic fields are caused by electric charges and their motion. Either a permanent magnet or a steady flow of electric current can produce a static electric field. A steady flow of electric current produces a direct-current (dc) magnetic field, and electric currents alternating in time produce alternating-current (ac) magnetic fields. Electric power that operates devices in the workplace or at home produces magnetic fields. Electric charges moving to produce a current create magnetic fields.

Magnetic fields are known to interact with biological systems. Particularly at low field strengths, magnetic fields' biological effects on cell metabolism and growth, gene expression, hormones, and promotion of tumors have been reported. Some magnetic field effects, such as the ability to stimulate tissue and bone growth, have been found to be beneficial; other effects might be harmful.

Biological effects

Researchers have suggested that magnetic fields suppress pineal body function and production of the pineal body’s principal hormone, melatonin, thereby increasing the risk of developing certain cancers, particularly breast cancer. Indeed, female flight attendants in both Finland and Denmark have been documented to have an increased incidence of breast cancer, which researchers have suggested is due to their simultaneous exposure to both magnetic fields and cosmic radiation.

A recent paper concluded that the magnetic field exposure appears to be characterized by frequencies between 100 and 800 hertz and varies in strength depending on the location within the aircraft and aircraft type. That is, based on limited measurements, maximum field strength varied from 0.2 to 0.6mT in economy class, to 1.2mT in first class, to 1.7mT in the first-class galley. Based on these results, researchers have suggested that magnetic field exposure on the flight deck may be significantly higher.

Suppression of pineal function has been implicated in causing prostate cancer and melanoma, both of which have been found among airline flight crews. Significantly increased incidence of prostate cancer has been found among Air Canada and British Airways pilots. When compared with a group of non-flying U.S. Air Force (USAF) officers, male USAF pilots were found to have more genital cancer and testicular cancer. Unlike breast tissue, the prostate appears to have a low sensitivity to ionizing radiation and resultant cancer.

In malignant melanoma, or skin cancer, the combined effect of solar radiation and magnetic field exposure may be important. In a proportional mortality ratio study, British Airways pilots were found to have a six times greater risk of developing melanoma. An increased risk of developing malignant melanoma was also found in an incidence study among USAF pilots.
Microbursts: The Unsolved Danger

By C. Barry Wetherington

Microbursts are the most dangerous aviation weather hazard known for air carrier operations—more so than thunderstorms, hail, or ice! They are rare enough to be discounted, yet are deadly enough to cause major loss of life—at least 500 fatalities have been attributed directly to losses sustained in microbursts.

Microbursts endure only a short time, with significant effects often lasting less than five minutes. This does not leave enough time for even a perceptive crew of a prior flight to encounter a microburst (perhaps before peak energy), take corrective action, and then report the information in time for it to benefit a trailing aircraft. A single aircraft may encounter the full adverse effects of a microburst, often without benefit of warning from another aircraft. Yet the extreme amount of energy that a microburst releases over a short distance means that the flight crew of the penetrating aircraft has little time to react.

Microbursts are extremely difficult to forecast, and may not actually be observed. Even with the capabilities of a fully equipped modern airliner, it is difficult to determine if a microburst exists in an aircraft’s flight path, if the aircraft is in the actual grasp of this hazard, or the microburst’s intensity. The combination of short duration, indefinite location, and nonobservability increases exponentially the difficulty of accurately reporting a microburst to an aircrew, or of their recognizing it.

Microbursts are insidious, initially appearing to be benign and to enhance performance. Every microburst that an aircraft encounters on approach or departure initially produces only two consistent indicators or cues—an increase in airspeed and a reduced rate of descent on approach or an increased rate of climb on departure, both a result of sharply increased local headwinds. These microburst-induced conditions, both confirmed by aircraft instruments, will generate a false perception in the crew that the aircraft has excess kinetic energy (high airspeed) and excess potential energy (high altitude).

The normal and proper reaction to these conditions would be to reduce airspeed and retard the throttles. This would result in a low pitch angle and reduced engine thrust, an unsuitable situation in a microburst because, seconds later, the aircraft will encounter the abrupt reversal to a tailwind on the outflow side of the microburst. Aircraft energy is the only certain defense against a survivable microburst, and reducing pitch and power would squander much of that advantage.

The effects of a microburst, never easily ascertained even in a “pure” context, are rendered even less apparent when they are associated with other significant weather phenomena. When the aircraft is flying through hail or heavy rain, airspeed perturbations and weather conditions mask the telltale signs of a microburst, delaying the crew’s recognizing the microburst’s existence and their initiating recovery.

The crew can use the aircraft’s engine thrust, wing lift, and total energy to counteract the effects of a microburst. Yet the

continued on page 16
Microbursts,
continued from page 15

masking weather phenomena often colocated in common microburst conditions substantially degrade these aircraft capabilities. NASA now confirms, with extensive testing, what pilots have suspected for years—that heavy rain or hail destroys wing lift and flap performance, particularly for higher angle-of-attack situations more common in approach situations. And an aircraft that flies into a heavily precipitating “wall of water” will lose kinetic energy, just as a diver decelerates upon entering the water. If, as is often the case, microbursts are colocated with other significant weather phenomena, such as heavy precipitation, then the most important operational capabilities—thrust, lift, and aircraft energy—are most degraded when most needed.

A microburst is in its most dangerous condition at the same time that aircraft forces are at their most self-defeating. At altitude or cruising speed, a microburst would be scarcely noticed, much less a hazard. Yet, if encountered near touchdown or at liftoff, even if a missed approach with absolute maximum power is made immediately, the aircraft may still inevitably contact the ground. And neither the crew nor any other person or agency can forecast if a microburst will be encountered, or if encountered, if it can be penetrated safely. That knowledge becomes available only after the event.

Research and Development

Airline pilots are now regularly exposed to accurate microburst information, including testing, simulators, and videos, in compliance with recurrent training requirements. Yet, because microbursts could not be forecast or observed, the industry initially could provide no assistance to avoid them. Industry experts therefore concentrated on developing and publishing recommended (usually correct) microburst penetration techniques and procedures, emphasizing success if properly accomplished. But a significant number of microbursts cannot be penetrated safely regardless of what technique is used, the emphasis on techniques and procedures discounted the real danger—impenetrability and inevitable ground contact.

Too much of the operational side of the industry remains at that level of misunderstanding. Penetration techniques are important only for a survivable microburst—one that can be successfully penetrated only with proper technique and procedure. The only helpful procedure for high-energy microbursts is avoidance; and at the present state of operational technology, avoidance is essentially impossible. The means of identifying the existence and location of microbursts are critical subjects for research. Had the industry recognized and accepted the work of the University of Chicago’s Dr. Ted Fujita when first published, research might have led to earlier doppler radar solutions or cockpit solutions for alerting abnormal changes in airspeed or altitude or to a useful low-level wind-shear avoidance system (LLWAS).

Observable Weather

A mature thunderstorm can be observed visually from quite a distance at altitude, or by radar if enough precipitation is produced to contour the radar return. Yet data are now beginning to suggest that aircraft radar may not be able to observe new, energetic, rapidly developing cells because of insufficient condensed precipitation—prime candidates to spawn microbursts.

The widespread effects of a thunderstorm cannot necessarily be observed. For example, hail can be present 15 horizontal miles away from an observable thunderhead radar return. But hail, particularly in isolated shafts, is visually indistinct, similar to a partial obscuration, and does not reflect well on radar if no rain is present. Therefore, hail can often be located only through PIREPS (pilot reports) from other locally operating aircraft or by NWS/ATC observations.

While decreased visibility is an observable condition, determining the extent of the impairment to visibility is difficult in flight, particularly in more dangerous low-visibility conditions.

The Pilot

Can a pilot identify a microburst upon encountering one? Under ideal circumstances, an LLWAS wind shear alert can suggest that a microburst potentially exists, though such an alert is far from reliable and ATC had been reluctant to exploit it.

If while flying an otherwise “normal” approach, a pilot receives an ATC-provided wind shear alert, or has any other suspicions or intuition of microburst, including shifting wind velocities or disparate gusts, close monitoring of airspeed and altitude on final approach becomes important. Any deviations above glide slope or increases of airspeed, particularly if occurring simultaneously, must be assumed to indicate a microburst condition, especially if they happen during the peak microburst periods—summer afternoons. An immediate missed approach should be considered, particularly if the aircraft is inside the outer marker. Awaiting indication of airspeed loss and/or descent below glide slope is unwise.
The need for reasonable limits on flight time and duty time (FT/DT) plus the need for regulations to ensure adequate rest between duty periods have been concerns for ALPA since the Association was created in 1931.

More than half a century after ALPA’s inception and its advocacy on this issue, in July 1985 F/O Bruce Woodruff (Delta), then chairman of ALPA’s Flight Time/Duty Time Committee, wrote to ALPA’s Board of Directors regarding a final rule that the FAA had issued earlier that month, amending flight-time limits and minimum rest requirements for airline pilots.

“ALPA has struggled with interpretation of flight and duty regulations, coupled with noncompliance by the majority of air carriers. In addition, during that period the FAA issued numerous notices of proposed rulemaking (NPRMs) which would have been disastrous to ALPA had they gone into effect. Since 1980 alone, ALPA has successfully engineered the withdrawal of three such NPRMs.

“While NPRM 84-3 was basically favorable to ALPA, three proposed changes contained therein were not…. [However,] in this final rule all areas of concern outlined by ALPA have been addressed and are favorable to air safety.”

Fast-forward 25 years: Since Woodruff wrote the letter quoted above, ALPA has participated in several major efforts to bring FT/DT limits and minimum rest requirements into alignment with a growing body of scientific knowledge on fatigue.

Below are some highlights from recent years.

NPRM 95-18

A decade after the FAA issued its 1985 rule on FT/DT limits and rest requirements, the agency proposed another rule change. Highlights of the 1995 proposal included

- The duty-time limit would be reduced from the current 16 hours to 14 hours for two-pilot flight crews. The proposal would have allowed increasing flight time to 10 hours in the 14 duty hours.
- Additional duty hours would be permitted only for unexpected operational problems, such as flight delays. In no event could such delays add more than two hours to a pilot’s duty day.
- Airlines could no longer schedule pilots in advance in a way that would exceed the duty-time limit.
- Minimum rest would be increased from 8 hours to 10 hours.

From *Air Line Pilot*, October 2010

By James Johnson, Managing Attorney, ALPA Legal Department

MINI-CHRONOLOGY:

Regulatory History of Flight Limitation Rules

1931:

Commerce Department sets monthly flight-time limit of 110 hours. Operators want 140 hours/month, but ALPA’s founder and first president, Capt. Dave Behncke, campaigns for 85 hours/month.

1934:

ALPA prevails—National Labor Board’s Decision 83 limits flight time to 85 hours per month.

1938:

Substance of Decision 83 is incorporated into Civil Aeronautics Act of 1938. Civil Aeronautics Board (CAB) issues domestic flight-time rules, limiting flight time to 8 hours in a 24-hour period.

1942:

CAB amends rules to limit flight time to 30 hours/week.

1945–1947:

CAB issues flag (international) and supplemental flight-time rules.

1946–1982:

CAB and FAA issue 30 proposals to amend flight-time limits.

continued on page 18

Pilots would have to be given at least one 36-hour off-duty period every seven days (current rules call for a 24-hour minimum rest).

The FAA received more than 2,000 comments on NPRM 95-18, most of which did not favor the rule as proposed. No clear consensus emerged on what the final rule should say. The result: The agency issued no final rule.

1998 ARAC
In 1998, FAA Administrator Jane Garvey asked the Aviation Rulemaking Advisory Committee (ARAC) to work with the airline industry to reach consensus on a revised reserve rest requirement and said that, if no consensus could be reached (and it wasn’t), the FAA would subsequently enforce the current regulations. That current regulation required airlines to give pilots on reserve duty at least nine hours of rest before being put on reserve (“on call”) status but was ineffectively enforced. Airlines had been interpreting the rule to say that no specified rest was required before a pilot could be called to fly. ALPA was a major player in the ARAC.

In February 1999, the ARAC reported its lack of consensus.

1999: Enforcement of reserve rest rule
The failure of the 1998 ARAC to resolve the FAA’s lack of enforcement of the reserve rest rule for domestic pilots led ALPA to apply pressure to the FAA. In December, the agency informed airlines that it would enforce the rule.

2008 FAA Fatigue Symposium
In June 2008, the FAA sponsored the “Fatigue Symposium: Partnerships for Solutions” to encourage the aviation community to proactively address aviation fatigue management issues. Participants included several ALPA pilot representatives, the NTSB, and many of the world’s leading authorities on sleep and human performance.

The Symposium provided attendees with the most current information on fatigue physiology, management, and mitigation alternatives, including fatigue risk management systems (FRMS), perspectives from aviation industry experts and scientists on fatigue management, and information on the latest fatigue mitigation initiatives and best practices.

2007—present: Renewed ALPA priority on updating rules to end fatigue
Beginning in 2007 with the strategic planning session of ALPA’s Executive Council, and continuing right through the present, the Association has put renewed emphasis on, and resources behind, bringing flight-time and duty-time limits and rest requirements into the modern age.

In October 2007, ALPA’s president, Capt. John Prater, announced the creation of ALPA’s Blue Ribbon Panel on Fatigue, which built on the work done by the ALPA Pilot Fatigue Task Force created in 2005. Prater charged the five-pilot Blue Ribbon Panel with reviewing the science and economics surrounding pilot fatigue and the regulations regarding flight-time and duty-time limits and minimum rest requirements in both Canada and the U.S. The Panel also developed recommendations on actions for ALPA’s leaders to take to address these serious concerns.

During the Association’s October 2008 Board of Directors meeting, the union recommitted itself to setting flight- and duty-time reform as a top strategic priority.

Acting on these actions by ALPA’s top governing bodies, the Association testified before the U.S. Congress several times during 2007–2009 regarding the need to overhaul the FAA’s antiquated rules. As a result of these public activities and the diligent behind-the-scenes work of ALPA’s Government Affairs Department, the Association

- obtained language in both the Senate and House versions of the FAA reauthorization bill in 2007/2008 requiring the FAA to address flight- and duty-time issues, and kept that language in the 2009 FAA reauthorization bill, and
- got language included in H.R. 3371, the Airline Safety and Pilot Training Improvement Act of 2009 (which the
By Capt. Don Wykoff (Delta), ALPA Executive Administrator and ALPA's Flight Time/Duty Time Committee Chairman

For decades, ALPA tried hard to get the FAA to change its outdated flight- and duty-time (FT/DT) limits and minimum rest requirements for U.S. airline pilots. Though we made incremental improvements and rose closer to our goal of rational FT/DT limits and minimum rest requirements based on science, significant change did not occur until the tragic Colgan Flight 3704 accident in February 2009—putting the spotlight on the ills of our industry, including pilot fatigue.

From ARC to NPRM

ALPA’s longstanding campaign to update FT/DT rules advanced in 2009 when FAA Administrator Randy Babbitt appointed seven ALPA members to the FAA’s Flight and Duty Time Limits and Rest Requirements Aviation Rulemaking Committee (ARC) and directed the ARC to comprehensively review current FT/DT regulations and recommend changes to reduce pilot fatigue and improve safety. Our pilots on the ARC represented every sector of Part 121 flying—regional, domestic, international, and cargo.

The ARC made its recommendations to the FAA on Sept. 1, 2009. While the agency said it would issue a notice of proposed rule-making (NPRM) by the end of 2009, that time line did not materialize, and ultimately the FAA released its long-awaited, and long overdue, NPRM on Sept. 14, 2010. This past summer Congress passed, and President Obama signed into law, a bill that, among other things, mandated that the FAA issue a final rule by July 31, 2011.

ALPA is analyzing the lengthy NPRM and recently briefed the Board of Directors on details of the proposed rule. Following the thorough review, ALPA will submit a comprehensive and detailed response to the FAA, and the final comment will be publically available on the Federal Docket. ALPA’s Flight Time/Duty Time Committee welcomes input from ALPA members to consider when analyzing the NPRM and developing the Association’s position. E-mail your comments or questions to fatigue@alpa.org.

Good news . . .

As ALPA’s president, Capt. John Prater, told the House Aviation Subcommittee during its September 16, 2010, hearing on the NPRM, our first read through the lengthy document revealed several apparently favorable aspects of the proposal, which

• appears to apply scientific principles and recognizes human physiological limitations by proposing increased minimum rest periods and more reasonable duty days, and recognizes the effects of circadian rhythms on fatigue,
• applies to all FAR Part 121 flying, eliminating “carve outs” for supplemental operations,
• incorporates FAR Part 91 “tag on” or ferry flights within FT/DT limits,
• requires recurrent fatigue education and training at all airlines and calls for airlines to implement a fatigue risk management system,
• requires airlines to accurately record and set scheduled flight and duty periods based on actual operations, with adjustments mandated if unreliable scheduling is used,
• makes the decision to extend the duty period a joint responsibility of the pilot in command and the airline and limits the number of times the duty period may be extended,

continued on page 20

How the Proposed FAR 117.25 Rest Period Differs From the Current FAR

FAA proposal: FAR 117.25 (d) No certificate holder may schedule and no flightcrew member may accept an assignment for reserve or a flight duty period unless the flightcrew member is given a rest period of at least 9 consecutive hours before beginning the reserve or flight duty period measured from the time the flightcrew member reaches the hotel or other suitable accommodation.

The most significant change in the proposed FAR concerning rest is that it is measured from the time you reach the place of rest. Effectively, it appears that the FAA will no longer deal with the concept of “transportation local in nature.” Today, as we know, the rest period is measured from time of release from duty to time of report for duty and includes travel time to a local hotel. The idea behind the ARC participants’ minimum rest period recommendation was to make possible an eight-hour sleep opportunity, and ALPA’s FT/DT Committee will analyze the FAA’s proposed rule against that recommendation and ALPA policy.
A Short History, continued from page 18

House passed), directing the FAA to update flight- and duty-time rules to incorporate current scientific knowledge about fatigue.

2009: Flight-time/duty-time ARC

FAA Administrator Randy Babbitt created an Aviation Rulemaking Committee (in which ALPA was a full participant, having seven members from all types of airline flying, including the co-chair) to develop consensus-based recommendations leading to an NPRM by the end of 2009, with a final rule expected by the end of 2010.

2010: Congress mandates FT/DT regulatory overhaul

Congress passed H.R. 5900, the Airline Safety and FAA Extension Act of 2010, and President Obama signed it into law August 1. H.R. 5900, which ALPA helped craft, directs the FAA to issue a FT/DT NPRM within 180 days, and a final rule within one year, setting FT/DT limits and minimum rest requirements based on scientific evidence that addresses pilot fatigue.

Meanwhile, Capt. Dan Adamus (Jazz), president of ALPA’s Canada Board, co-chairs the Fatigue Management Working Group of the Canadian Aviation Regulation Advisory Council (CARAC) Technical Committee, with Capt. Martin Gauthier (Air Transat), chairman of the ALPA Flight Time/Duty Time Committee for Canada, serving as ALPA’s member on the group. Capt. Percy Wadia (Jazz), his MEC’s FT/DT chairman, and ALPA legal and government affairs representative Al Ogilvie serve as technical advisors to ALPA.

Press-time update:
As this issue goes to press, the FAA has yet to publish its final rule for FT/DT. Announcement of the final rule may be delayed by upward of several months beyond the Congressionally-mandated August 1, 2011 deadline as charter and cargo operators voice their concerns and the White House Office of Management and Budget reviews the FAA’s proposal.

One Step Closer, continued from page 19

- requires deadheading to be counted as duty time, and
- specifically recognizes reserve duty.

... and shortcomings

After our initial review, however, we found a few areas in which the NPRM does not adequately capture the ARC’s recommendations:

- ensuring that the length and quality of rest after a long-range flight across multiple time zones is sufficient before the next flight/duty period,
- ensuring that the concept of fitness for duty remains a joint responsibility that doesn’t create a burdensome commuting tracking and reporting system with an unintended consequence of adversely affecting pilot fatigue,
- ensuring that the application of augmented flight- and duty-period tables addresses the circadian disruption that the flightcrew member may experience in certain types of flying, and
- the viability of increasing block time in a duty period up to 10 hours.

So after many fits and starts over decades and continual advocacy by ALPA and others, the FAA has published an NPRM having the potential to make significant improvements in FT/DT limits and minimum rest requirements. The ultimate value of the final rule will depend on application of scientific principles that are tempered by experience gained through use of those rules on the line.

Now is the time—our time—to double our efforts to make effective and valued comment to the new, proposed rules and provide a level playing field across our industry.
With the completion of this issue of the *Wiss-key*, we will see a small (very small) change in the masthead. I will be assuming the role of editor. (Yes, I do know what happens when one assumes. . . .) So, what does this mean? Not a whole lot, really—my plans are to carry on business as usual, and to try to improve on what is already considered one of the premier newsletters among the ALPA carriers.

Although Gideon Berkowitz is taking a well-deserved break from the Communications Committee, he does intend to keep active as a union volunteer working with one of the other committees. He just wants to take on something that is perhaps a little less taxing . . . he kept mentioning this word, “deadline,” when we spoke about the transition not too long ago. Hmmm . . . what have I gotten myself into?

Looking back on past issues, Gideon first appears on the masthead in the Fall 2009 issue as assistant editor. He then took over as editor for the next five issues—including this one—with the first issue under his direction happening to be the infamous “banned” issue. Thanks, Gideon, for your work on the *Wiss-key* over the past two years, and for carrying on what our MEC vice chair, Richard Swindell, started with a publication called *The W*. It looks like I’ve got some big shoes to fill!

Please send your photos for use in the *Wiss-key*, on the ARW web portal, or in any of our other projects. E-mail them to me (Ken. Reinert@alpa.org) with a brief description, and I’ll add them to our photo repository.
Crossword Puzzle
(Solution on page 21)

Across
1. Invasion vessels
5. Hornets' cousins
10. Canine attack commands
14. Elec., for one
15. Other, in Orleans
16. One G
17. Resume phrase
19. Terrific review
20. Bumped impolitely
21. Sweater
23. Shoe store giveaway for people without socks
26. Conger catchers
27. "Good golly!"
32. ___ Z (everything)
33. Eastern V.I.P.
34. Garners
38. U.N. member through 1991
40. Comics canine
42. Get in return, as benefits
43. 1980's-90's boxing champ
45. Make a statute
47. Based ___ true story
48. Test tube heater
51. Texas border town
54. Small unit of force
55. "The Mikado," e.g.
58. "Amo, amas, I love ___"
62. Dole's Senate successor
63. "Fantastic!"
67. SALT subject
68. Jib or spanker
69. Subway stops: Abbr.
70. Twisty curves
71. Prefix with glycemic

Down
1. Lady who is said to be fickle
2. Eminem song on "The Marshall Mathers LP"
3. Poop out
4. Yawning, most likely
5. Word with cry or baby
6. Jul. follower
7. Arrest
8. Indonesian boat
9. Merchant
10. Tot toter
11. "___ my doubts"
12. Protection
13. Some people in suits
18. Tomato aliment
22. Knowing glance
24. Busy beaver's buildings
25. Behind the ___
27. ___ monde (high society)
28. "___ Lang Syne"
29. Red-ink amount
30. New Hampshire mica city
31. Brief trip
35. One billion years
36. Window glass
37. Box gently
39. Flack and Peters
41. Frozen dessert franchise
44. Like the upper half of the Venus de Milo
46. Bonito relatives
49. Zero
50. Savor
51. Hangs around
52. Cocteau's "The Blood of ___"
53. Anatomical networks
56. Sound of disapproval and a boy king
57. Sweet spot
59. "...I'm ___ deceiver": G. Colman
60. Mail packages
61. Norman battle town
64. Suffix with sucr- and lact-
Sudoku

Puzzle 1 (Solution on page 21)

<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

Fly safe—
Take care of each other out there.

Puzzle 2 (Solution on page 21)

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>9</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

ALPA WORLDWIDE
ACCIDENT/INCIDENT
HOTLINE

202-797-4180 (USA)

Backup Number:
703-892-4180 (USA)

Call this number immediately if you are involved in an airline accident/serious incident at any place or any time (collect calls accepted from anywhere in the world).

For any other non–time-critical safety-related problem, call the ALPA Engineering and Air Safety Department TOLL-FREE at 1-800-424-2470 (U.S. & Canada).

ARE YOU INFORMED?

Are you receiving and reviewing these regular union updates?

Daily: Portal Service at www.awacalpa.org
Biweekly: Pay Day Hotline
Quarterly: The Wiss-key
Negotiations newsletter THE X-RAY

What about rapid notification methods for time-critical or time-sensitive information?

One Call Now Pilot Messaging Alert System, and FastRead E-mail

If not, update your contact information via “My ALPA” online at www.crewroom.alpa.org or by calling 1-888-FLY-ALPA (359-2572), option #3, for Membership Services.

Get Informed – Stay Informed
In this case, two words, ten letters, a straightforward etymology from the Irish uisce beatha and Scottish Gaelic uisge beatha, literally meaning “water of life.” From the phonetic alphabet, it’s the word used to pronounce the letter “W” in messages transmitted by radio; and it’s a nickname by which other pilots refer to us as a shortened derivative of Air Wisconsin. But for this pilot group, it means much more than that. It signals the heritage we have as an airline and as a pilot group. It encompasses the honor, integrity, and dedication of the individuals who constitute our ranks and the personality of the pilots who safely and professionally fly every day under the Air Wisconsin banner. It’s a hallmark of the unity of our pilot group—where we’ve been, where we are, and where we will go. Whether you fly here for a few years and move on or decide to retire here, and in addition to whatever else you are or may become, you’ll always be an “Air Wiss-key” pilot—you are a part of our legacy as much as we are a part of yours.

We hope you have enjoyed this edition of the Wiss-key.

What’s in a name?

The Wiss-key

iPod Playlist

- Safety Dance
- Respect the Wind
- Who'll Stop the Rain
- Safe in New York City
- Riders on the Storm
- Safe and Sound
- Ted the Mechanic
- Broken Safety
- Mea Culpa
- Safety
- Crash/Land
- Safe Place
- Rest

- Men Without Hats
- Van Halen
- CCR
- AC/DC
- The Doors
- Sheryl Crow
- Deep Purple
- 40 Cal.
- Enigma
- Centrevol
- In-Flight Safety
- Staind
- Parts & Labor
ARW ALPA Directory

ARW MEC–MEC Officers, LEC 49, LEC 50, LEC 51
ARWMEC@alpa.org

MEC
ARWMECOfficers@alpa.org
Chairman
Joe Ellis
757-754-7687
Joe.Ellis@alpa.org

Vice Chairman
Richard Swindell
317-697-5113
Richard.Swindell@alpa.org

Secretary-Treasurer
John Schumacher
765-714-0833
John.Schumacher@alpa.org

LEC 49 (DCA, RDU)
LEC49@alpa.org
Chairman & Captain Rep
Jeff Pruett
507-398-2700
Jeffrey.Pruett@alpa.org

Vice Chairman & F/O Rep
Jared Armstrong
608-449-3853
Jared.Armstrong@alpa.org

Secretary-Treasurer
Matt Chadwick
617-359-2070
Matt.Chadwick@alpa.org

RDU Liaison
Thorne Saylor
317-903-8950
Thorne.Saylor@alpa.org

LEC 50 (LGA, ORF)
LEC50@alpa.org
Chairman & Captain Rep
Chris Suhs
757-513-8979
Chris.Suhs@alpa.org

Vice Chairman & F/O Rep
Reed Donoghue
978-387-2248
Reed.Donoghue@alpa.org

Secretary-Treasurer
Tom Nelson
507-382-4977
Tom.Nelson@alpa.org

LEC 51 (PHL)
LEC51@alpa.org
Chairman & F/O Rep
Joel Barman
704-953-9200
Joel.Barman@alpa.org

Vice Chairman & Captain Rep
Steve Kern
623-229-1999
Steve.Kern@alpa.org

Secretary-Treasurer
Thorne Saylor
317-903-8950
Thorne.Saylor@alpa.org

ALPA Legal
Contract Administrator
Chris Brown
952-853-2364
Christopher.Brown@alpa.org

Negotiations Attorney
David Holtzman
817-685-7474 ext. 5334
David.Holtzman@alpa.org

Legal Secretary
Barb Schilling
952-853-2362
952-853-2300(F)
Barb.Schilling@alpa.org

ARW ALPA COMMITTEES
Aeromedical
ARWAeromedical@alpa.org
Chairman
Shaun Williams
218-779-6681
Shaun.Williams@alpa.org

Member
[vacant]

CASC: Central Air Safety Committee
ARWCASC@alpa.org

Safety
(Al) (S) Accident Investigation
Member / (S) Safety Member
ARWSafety@alpa.org
Chairman (Al) (S)
Gene Rambo
202-674-1445
Gene.Rambo@alpa.org

(Al)
Kristen Brown
386-871-0251
Kristen.Brown@alpa.org

ASAP: Aviation Safety Action Program
ARWASAP@alpa.org
Chairman & Primary Rep
Dan Lehenbauer
262-617-9601
Dan.Lehenbauer@alpa.org

Secondary Rep
DeWayne Geoghen
317-331-7500
DeWayne.Geoghen@alpa.org

CIRP: Critical Incident Response Program
ARWCIRP@alpa.org
Chairman
Kent Fujimoto
701-610-1146
Kent.Fujimoto@alpa.org

Member
Tim Kosloski
920-422-0429
Tim.Kosloski@alpa.org

Member
[Al]
Kristen Brown
386-871-0251
Kristen.Brown@alpa.org

Member
[Al]
Joel Barman
218-779-6681
Joel.Barman@alpa.org

Member
[Al]
Christopher.Brown@alpa.org

ARWFOQA@alpa.org
Chairman & Gatekeeper
[Al] (S)
Thorne Saylor
317-903-8950
Thorne.Saylor@alpa.org

Gatekeeper
[Al] (S)
Dan Cohen
847-226-3901
Dan.Cohen@alpa.org

Gatekeeper
[Al] (S)
Ron Stocki
406-690-4061
Ron.Stocki@alpa.org

Communications
ARWCommunications@alpa.org
ARW@alpa.org

Contact:
The Wiss-key or PDH
Chairman
[AI] (S)
Stephan Wessel
386-801-5202
Stephan.Wessel@alpa.org

Webmaster
[AI]
Matt Wise
919-278-7109
Matt.Wise@alpa.org

Wiss-key Editor
Gideon Berkowitz
321-626-4176
Gideon.Berkowitz@alpa.org

Wiss-key Asst. Editor
Ken Reinert
703-862-0596
Ken.Reinert@alpa.org

Wiss-key Asst. Editor
Richard Clarke
757-478-6319
Richard.Clarke@alpa.org

X-RAY Editor
Thorne Saylor
317-903-8950
Thorne.Saylor@alpa.org

P2P: Pilot-to-Pilot
ARWP2P@alpa.org
P2P Coordinator
Rani Hobgood
703-405-5486
Rani.Hobgood@alpa.org

Grievance
ARWGrievance@alpa.org
Chairman
Brian Milburn
386-235-5662
Brian.Milburn@alpa.org

Gatekeeper
[Al] (S)
Dan Cohen
847-226-3901
Dan.Cohen@alpa.org

Gatekeeper
[AI] (S)
Ron Stocki
406-690-4061
Ron.Stocki@alpa.org

Communications
ARWCommunications@alpa.org
ARW@alpa.org

Contact:
The Wiss-key or PDH
Chairman
[AI] (S)
Stephan Wessel
386-801-5202
Stephan.Wessel@alpa.org

Webmaster
[AI]
Matt Wise
919-278-7109
Matt.Wise@alpa.org

Wiss-key Editor
Gideon Berkowitz
321-626-4176
Gideon.Berkowitz@alpa.org

Wiss-key Asst. Editor
Ken Reinert
703-862-0596
Ken.Reinert@alpa.org

Wiss-key Asst. Editor
Richard Clarke
757-478-6319
Richard.Clarke@alpa.org

X-RAY Editor
Thorne Saylor
317-903-8950
Thorne.Saylor@alpa.org

P2P: Pilot-to-Pilot
ARWP2P@alpa.org
P2P Coordinator
Rani Hobgood
703-405-5486
Rani.Hobgood@alpa.org

Grievance
ARWGrievance@alpa.org
Chairman
Brian Milburn
386-235-5662
Brian.Milburn@alpa.org

Gatekeeper
[Al] (S)
Dan Cohen
847-226-3901
Dan.Cohen@alpa.org

Gatekeeper
[AI] (S)
Ron Stocki
406-690-4061
Ron.Stocki@alpa.org

Communications
ARWCommunications@alpa.org
ARW@alpa.org

Contact:
The Wiss-key or PDH
Chairman
[AI] (S)
Stephan Wessel
386-801-5202
Stephan.Wessel@alpa.org

Webmaster
[AI]
Matt Wise
919-278-7109
Matt.Wise@alpa.org

Wiss-key Editor
Gideon Berkowitz
321-626-4176
Gideon.Berkowitz@alpa.org

Wiss-key Asst. Editor
Ken Reinert
703-862-0596
Ken.Reinert@alpa.org

Wiss-key Asst. Editor
Richard Clarke
757-478-6319
Richard.Clarke@alpa.org

X-RAY Editor
Thorne Saylor
317-903-8950
Thorne.Saylor@alpa.org

P2P: Pilot-to-Pilot
ARWP2P@alpa.org
P2P Coordinator
Rani Hobgood
703-405-5486
Rani.Hobgood@alpa.org

Grievance
ARWGrievance@alpa.org
Chairman
Brian Milburn
386-235-5662
Brian.Milburn@alpa.org
Negotiating
ARWNegotiating@alpa.org
Chairman
Mark Lockwood
386-795-0874
Mark.Lockwood@alpa.org
Member
Bill Patterson
847-650-1736
Bill.Patterson@alpa.org
Member
Bob Burgess
612-600-4359
Bob.Burgess@alpa.org

Pilot Assistance
ARWAAssistant@alpa.org
Chairman
Joel Barman
704-953-3200
Joel.Barman@alpa.org
Member
Aaron Fry
704-941-5667
Aaron.Fry@alpa.org
Member
Mark Morris
707-718-2168
Mark.Morris@alpa.org

Professional Standards
ARWProStands@alpa.org
Chairman
Jayme Schappals
574-361-3115
Jayme.Schappals@alpa.org

Legislative Affairs
ARWLAL@alpa.org
Chairman
Brendan Cantwell
703-338-1926
Brendan.Cantwell@alpa.org
Member
Nicholas Chichester
614-403-5693
Nicholas.Chichester@alpa.org

R&I: Retirement and Insurance
ARWRandI@alpa.org
Chairman
Todd Hannemann
720-480-8257
Todd.Hannemann@alpa.org
Trustee
Vacant
Trustee
Richard Dixon
303-949-4925
rdixonva@gmail.com
Plan Administrator 401(K)
Gary Miller [retired]
563-650-0454
888-417-9512
gmiller1@mchsi.com

Scheduling
ARWScheduling@alpa.org
Chairman
Tybee Halter
808-298-4369
Tybee.Halter@alpa.org

Training and Testing
ARWTraining@alpa.org
Chairman
Erik Johnson
612-687-6184
Erik.Johnson@alpa.org
Member
Matthew Hintze
217-621-6916
Matthew.Hintze@alpa.org

Veterans Assistance
ARWVA@alpa.org
Chairman
Dave Wilcox
615-904-8977
Bugout71@bellsouth.net

General Resource Information

ARW MEC Portal: www.awacalpa.org (for assistance, call Ext. 1-888-359-2572, ext. 3, prompt 1 if you know your ALPA number, or prompt 2 to speak to an ALPA rep, available 0900–1700 Eastern Time)

ALPA Aeromedical: 303-341-4435

ALPA Accident Hotline: 202-797-4180 / 703-892-4180

ASAP Hotline: 1-800-292-2367 acc. 2992, ext. 6786 (when computer access is not available)

CORRECTIONS: Contact Stephan.Wessel@alpa.org or Richard.Swindell@alpa.org with changes.

VACANCIES: Contact your local captain or F/O rep if you are interested in filling a vacancy.
Code of Ethics

The tenets of this Code shall apply to all members without regard to gender.

1. An Air Line Pilot will keep uppermost in his mind that the safety, comfort, and well-being of the passengers who entrust their lives to him are his first and greatest responsibility.

2. An Air Line Pilot will faithfully discharge the duty he owes the airline which employs him and whose salary makes possible his way of life.

3. An Air Line Pilot will accept the responsibilities as well as the rewards of command, and will at all times so conduct himself both on duty and off as to instill and merit the confidence and respect of his crew, his fellow employees, and his associates within the profession.

4. An Air Line Pilot will conduct his affairs with other members of the profession and with ALPA in such a manner as to bring credit to the profession and ALPA as well as to himself.

5. To an Air Line Pilot the honor of his profession is dear, and he will remember that his own character and conduct reflect honor or dishonor upon the profession.

Having endeavored to his utmost to faithfully fulfill the obligations of the ALPA Code of Ethics and Canons for the Guidance of Air Line Pilots, a pilot may consider himself worthy to be called . . . an airline pilot.